Course Outcomes (COs)

Course Out Come B.Sc.Physics		
SEM-I Mechanics		
CO1	Demonstrate the simple phenomenon concerning motion in our daily	
	life.	
	Apply the conservation laws in many physical phenomenons.	
COO	Formulate the mathematical relations based on physical phenomenon.	
CO2	Demonstrate the ability to justify and explain their thinking and	
	approach. Develop proficiency in the analysis of complex physical	
CO2	problems. Understand the Dhilosophical views of Dhysics	
COS	Elaborate and explain the concept of relativity with applications	
	Elaborate and explain the concept of relativity with applications	
SFM-II · Thermal Physics		
CO1	Design many simple apparatus or machines based on thermal energy	
	Develop many simple instruments based on optics.	
	Explain the applications of thermal energy and optical phenomenon in	
	daily life. Use the appropriate techniques to explain the	
	thermodynamic and optical process.	
CO2	Apply in chemistry, life science and automobile engineering etc	
	Formulate many advance theories based on heat and light.	
	Understand the working of thermometry and optical instruments in	
002	medical sciences	
CO3	Develop the advance theories and experimental techniques based on	
	near and light.	
<u>CO</u> 4	Develop proficionely in the analysis of complex thermodynamic	
CO4	System	
	Explain the application of thermodynamic and optics in Astrophysics	
	Explain the application of thermodynamic and optics in Astrophysics.	
	1	
SEM-III ELECTROMAGNETIC THEORY		
CO1	Design many electric circuits used for many purposes in daily life.	
	Design many hydroelectric generators for generation of energy.	
	Understand the working electrical machines.	

~ ~ ~	Understand the applications electricity magnetism in medical science.
CO2	Explain about the production of electromagnetic waves. Explain about
	the dangerous effect of electricity and magnetism to health
	Understand about the Atmospheric electricity.
	Develop the advance experimental techniques based on electricity and
	magnetism
CO3	Understand and explain about the properties of charge for energy
	generation. Apply the mathematical tools to explain the electric and
	magnetic phenomenon Understand the concept of charge transport in
	materials.
	SEM-IV WAVES AND OPTICS
CO1	Fundamentals of Waves -Transverse wave propagation along a
	stretched string, general solution of wave equation and its significance,
	modes of vibration of stretched string clamped at ends, overtones,
	energy transport, transverse impedance. Longitudinal vibrations in
	bars- wave equation and its general solution, Special cases: (i) bar
	fixed at both ends, ii) bar fixed at the midpoint, iii) bar free at both
	ends, iv) bar fixed at one end, Transverse vibrations in a bar - wave
	equation and its general solution. Boundary conditions, clamped free
	bar, free-free bar, bar supported at both ends, Tuning fork.
CO2	Principle of superposition – coherence – temporal coherence and
	spatial coherence – conditions for Interference of light. Interference by
	division of wave front: Fresnel's biprism – determination of wave
	length of light. Determination of thickness of a transparent material
	using biprism – change of phase on reflection – Lloyd's mirror
	experiment. Interference by division of amplitude: Oblique incidence
	of a plane wave on a thin film due to reflected and transmitted light
	(Cosine law) – Colours of thin films – Non-reflecting films –
	interference by a plane parallel film illuminated by a point source –
	Interference by a film with two non-parallel reflecting surfaces
	(Wedge shaped film) – Determination of diameter of wire-Newton's
	rings in reflected light with and without contact between lens and glass
	plate, Newton's rings in transmitted light (Haidinger Fringes) –
	Determination of wave length of monochromatic light – Michelson
	Interferometer – types of fringes – Determination of wavelength of
	monochromatic light, Difference in wavelength of sodium D1,D2 lines
	and thickness of a thin transparent plate.

CO3	Introduction – Distinction between Fresnel and Fraunhofer diffraction,
	Fraunhofer diffraction:- Diffraction due to single slit and circular
	aperture – Limit of resolution – Fraunhofer diffraction due to double
	slit – Fraunhofer diffraction pattern with N slits (diffraction grating).
CO4	Resolving Power of grating – Determination of wave length of light in
	normal and oblique incidence methods using diffraction grating
CO5	Fresnel diffraction-Fresnel's half period zones – area of the half period
	zones – zone plate – Comparison of zone plate with convex lens –
	Phase reversal zone plate – diffraction at a straight edge – difference
	between interference and diffraction.

SEM-V MODERN PHYSICS

CO1	Atomic Spectra: Introduction - Drawbacks of Bohr's atomic model – Sommerfeld's elliptical orbits -relativistic correction (no derivation).
	Stern & Gerlach experiment, Vector atom model and quantum
	numbers associated with it. L-S and j-j coupling schemes. Spectral
	terms, selection rules, intensity rules – spectra of alkali atoms, doublet
	The structure, Zeeman Effect, Paschen-Back Effect and Stark Effect
CO2	(Dasic idea). Melecular Spectroscopy Types of melecular spectra, pure rotational
02	energies and spectrum of diatomic molecular spectra, pure rotational
	nuclear distance. Vibrational energies and spectrum of diatomic
	molecule. Raman effect, classical theory of Raman effect.
	Experimental arrangement for Raman effect and its applications.
CO3	Quantum Mechanics Inadequacy of classical Physics: Spectral
	radiation - Planck's law (only discussion). Photoelectric effect -
	Einstien's photoelectric equation. Compton's effect - experimental verification.
CO4	Matter waves & Uncertainty principle: de Broglie's hypothesis -
	wavelength of matter waves, properties of matter waves. Phase and
	group velocities. Davisson and Germer experiment. Double slit
	experiment. Standing de Brogile waves of electron in Bohr orbits.
	Heisenberg's uncertainty principle for position and momentum (x and
	px), Energy and time (E and t). Gamma ray microscope. Diffraction by
	a single slit. Position of electron in a Bohr orbit. Complementary
	principle of Bohr

SEM-VI ELECTRONICS		
CO1	Band theory of P-N junction: Energy band in solids (band theory),	
	valence band, conduction band and forbidden energy gap in solids,	
	insulators, semi conductors and pure or intrinsic semiconductors and	
	impure or extrinsic semi-conductors. N-type semi-conductors, P-type	
	semi-conductors, Fermi level, continuity equation. Diodes: P-N	
	junction diode, Half-wave, full-wave and bridge rectifier. Zener diode	
	& its characteristics. Zener diode as voltage regulator.industrial	
	processes. To study experimentally the qualitative detection of known	
	and unknown radicals and insoluble materials in a mixture	
CO2	Bipolar Junction Transistor (BJT) – p-n-p and n-p-n transistors,	
	current components in transistors, CB, CE and CC configurations –	
	transistor as an amplifier -RC coupled amplifier – Frequency response	
	(Qualitative analysis). Feedback concept & Oscillators: Feedback,	
	General theory of feedback–Concepts of oscillators, Barkhausen's	
	criteria, Phase shift oscillator – Expression for frequency of	
	oscillation.	
CO3	Special devices- Construction and Characteristics: Photo diode -	
	Shockley diode -Solar cell, Optocouplers - Field Effect Transistor	
	(FET) - FET as an Amplifier - Uni Junction Transistor (UJT), UJT as a	
	relaxation oscillator - Silicon controlled rectifier (SCR) - SCR as a	
	switch.	
CO4	Binary number system, conversion of binary to decimal and vice-	
	versa.Binary addition and subtraction (1's and 2's complement	
	methods).Hexadecimal number system.Conversion from binary to	
	hexadecimal and vice-versa, Decimal to hexadecimal and vice-versa.	
	Logic gates: OR, AND, NOT gates, truth tables, realization of these	
	gates using discrete components. NAND, NOR as universal gates,	
	Exclusive – OR gate (EX-OR). De Morgan's Laws – Verification.	